
电力、芯片制造、数据和延迟成四大限制因素,Scaling Law能续到2030年吗?
电力、芯片制造、数据和延迟成四大限制因素,Scaling Law能续到2030年吗?近年来,人工智能模型的能力显著提高。其中,计算资源的增长占了人工智能性能提升的很大一部分。规模化带来的持续且可预测的提升促使人工智能实验室积极扩大训练规模,训练计算以每年约 4 倍的速度增长。
近年来,人工智能模型的能力显著提高。其中,计算资源的增长占了人工智能性能提升的很大一部分。规模化带来的持续且可预测的提升促使人工智能实验室积极扩大训练规模,训练计算以每年约 4 倍的速度增长。
蹭下热度谈谈 OpenAI o1 的价值意义及 RL 的 Scaling law。
近段时间,AI 编程工具 Cursor 的风头可说是一时无两,其表现卓越、性能强大。近日,Cursor 一位重要研究者参与的一篇相关论文发布了,其中提出了一种方法,可通过搜索自然语言的规划来提升 Claude 3.5 Sonnet 等 LLM 的代码生成能力。
不必增加模型参数,计算资源相同,小模型性能超过比它大14倍的模型!
大模型时代,有个大家普遍焦虑的问题:如何落地?往哪落地?
9 月 2 日,马斯克发文称,其人工智能公司 xAI 的团队上线了一台被称为「Colossus」的训练集群,总共有 100000 个英伟达的 H100 GPU。
沿着 Scaling Law、卷模型性能,可能会走到「死胡同」。
沿着 Scaling Law、卷模型性能,可能会走到「死胡同」。 谁在影响、定义我们的时代?他们做了什么,如何思考?对话关键人物,记录历史底稿。 我们被倡导要想明白自己的目标是什么、并做出计划。然而,两位人工智能研究者却认为,这只适用于普通的小愿望。
近年来,Transformer等预训练大模型在语言理解及生成等领域表现出色,大模型背后的Scaling Law(规模定律)进一步揭示了模型性能与数据量、算力之间的关系,强化了数据在提升AI表现中的关键作用。
AnyGraph聚焦于解决图数据的核心难题,跨越多种场景、特征和数据集进行预训练。其采用混合专家模型和特征统一方法处理结构和特征异质性,通过轻量化路由机制和高效设计提升快速适应能力,且在泛化能力上符合Scaling Law。